

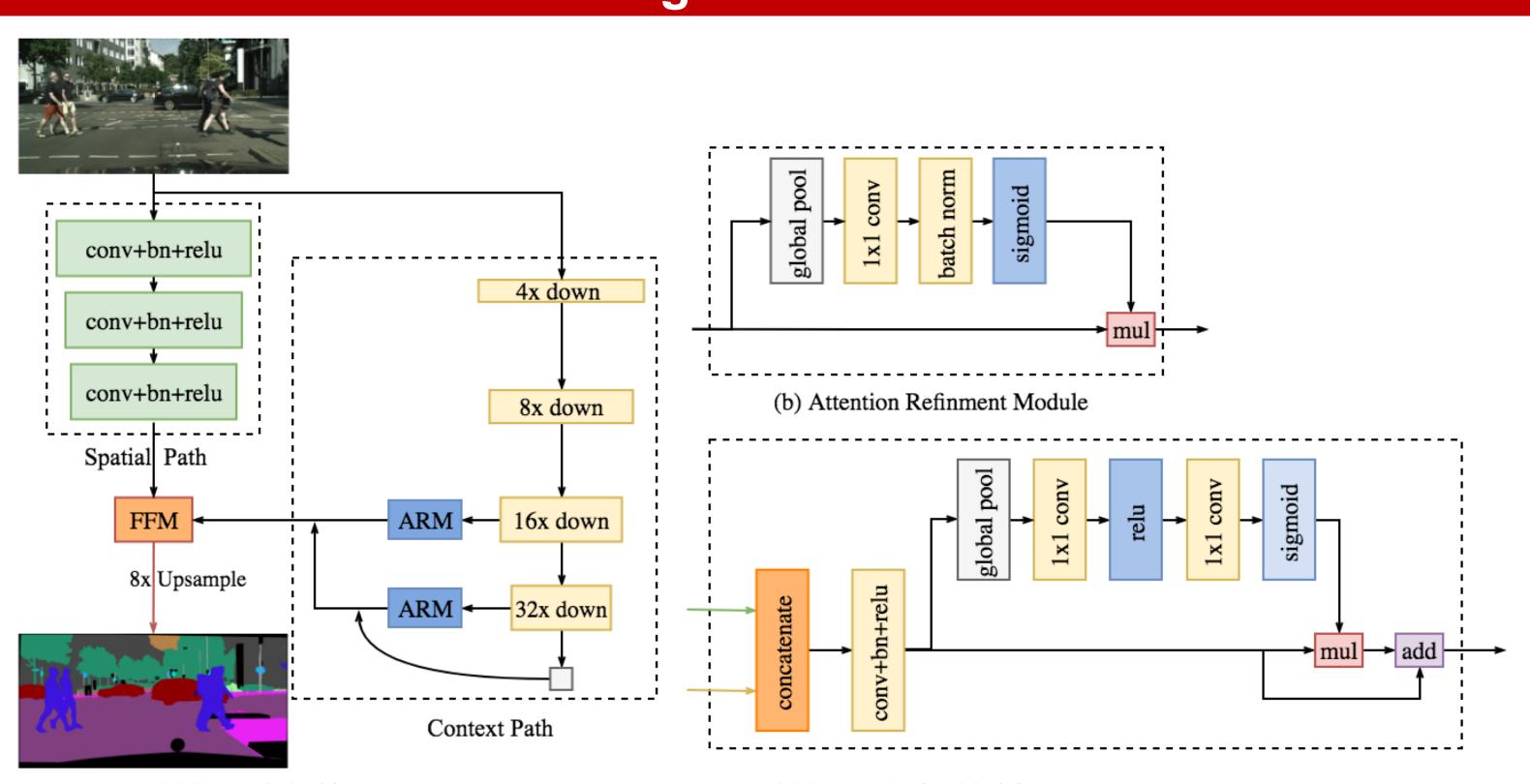
Motivation

Face⁺⁺ 盯视

- Restrict the input size
- Prune the model

Loss of spatial details

• Drop the last stage


Relief: U-shape structure — reduce speed + not completely recovered

Contributions

- We propose a novel approach to decouple the function of spatial information preservation and receptive field offering into two paths. Specifically, we propose a **Bilateral Segmentation Network** (BiSeNet) with a Spatial Path (SP) and a Context Path (CP).
- We design two specific modules, Feature Fusion Module (FFM) and Attention Refinement Module (ARM), to further improve the accuracy with acceptable cost.
- We achieve impressive results on the benchmarks of Cityscapes, CamVid, and COCO-Stuff. More specifically, we obtain the results of 68.4% on the Cityscapes test dataset with the speed of 105 FPS.

BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation

<u>Changqian Yu*1</u>, Jingbo Wang*2, Chao Peng3, Changxin Gao1, Gang Yu3, and Nong Sang1 ¹Huazhong University of Science and Technology ²Peking University ³Megvii Inc. (Face++)

(a) Network Architecture

Experimental Results ELODE & Daramatara

Ablation Study	FLOPS & Parameters				
Method	Mean IOU(%)	Method	BaseModel	GFLOPS	Parameters
CP CP+SP(Sum) CP+SP(DDM)	66.01 66.82	SegNet [1] ENet [25]	VGG16 [29] From scratch	$\begin{array}{c} 286.0\\ 3.8 \end{array}$	$29.5\mathrm{M}$ $0.4\mathrm{M}$
CP+SP(FFM) CP+SP(FFM)+GP	67.42 68.42	Ours Ours	Xception39 Res18	$\begin{array}{c} 2.9 \\ 10.8 \end{array}$	$5.8\mathrm{M}$ $49.0\mathrm{M}$
CP+SP(FFM)+ARM CP+SP(FFM)+GP+ARM	68.72 71.40				

Speed Comparison on different benchmarks

	NVIDIA Titan X				NVIDIA Titan XP							
Method	640	0×360	1280)×720	1920	×1080	640	0×360	128	80×720	1920)×1080
	ms	fps	\mathbf{ms}	fps	ms	fps	ms	fps	ms	fps	ms	fps
SegNet [1]	69	14.6	289	3.5	637	1.6	-	-	-	-	-	-
ENet $[25]$	7	135.4	21	46.8	46	21.6	-	-	-	-	-	-
Ours ¹	5	203.5	12	82.3	24	41.4	4	285.2	8	124.1	18	57.3
$Ours^2$	8	129.4	21	47.9	43	23	5	205.7	13	78.8	29	34.4

Bilateral Segmentation Network

(c) Feature Fusion Module

Speed Comparison on Cityscapes

Method	BaseModel	Mean	FPS	
in contour		val	test	110
SegNet [1]	VGG16	-	56.1	_
ENet $[25]$	From scratch	-	58.3	-
SQ [30]	SqueezeNet $[14]$	-	59.8	-
ICNet [39]	PSPNet50 [40]	67.7	69.5	30.3
DLC [17]	Inception-ResNet-v2	-	71.1	-
Two-column Net [34]	$\operatorname{Res50}$	<u>74.6</u>	72.9	14.7
Ours	Xception39	69.0	68.4	105.8
Ours	Res18	74.8	74.7	$\underline{65.5}$

Accuracy Comparison on Cityscapes

Method	BaseModel	Mean IOU(%)			
		val	test		
DeepLab [4]	VGG16 [29]	-	63.1		
FCN-8s [22]	VGG16	-	65.3		
Adelaide [19]	VGG16	-	66.4		
Dilation10 [37]	VGG16	68.7	67.1		
LRR [10]	VGG16	70.0	69.7		
DeepLab-v2+CRF $[5]$	$\operatorname{Res101}$	71.4	70.4		
RefineNet [18]	$\operatorname{Res101}$	-	73.6		
DUC [32]	Res152	76.7	76.1		
PSPNet [40]	Res101	-	<u>78.4</u>		
Ours	Xception39	72.0	71.4		
Ours	Res18	78.6	77.7		
Ours	$\operatorname{Res101}$	80.3	78.9		

Results on COCO-Stuff (164k/91class)

Method	BaseModel	Mean IOU(%)	Pixel Accuracy(%)
Deeplab-v2	VGG-16	24.0	58.2
Ours	Xception39	22.8	59.0
Ours	$\operatorname{Res}18$	28.1	$\underline{63.2}$
Ours	Res101	31.3	65.5

ECCV 2018 European Conference on Computer Vision

