Face⁺⁺ 盯视 明德厚学 求是名 WUHAN CHINA

Motivation

(d) Input

(e) FCN Based Model

- (f) Border Network
- Intra-class Inconsistency: the patches which share the same semantic label but different appearances
- **Inter-class Indistinction:** the two adjacent patches which have different semantic labels but with similar appearances

Contributions

- Rethink the task from a macroscopic point of view: to regard the semantic segmentation as a task to assign a consistent semantic label to one category of things, not just at the pixel level
- Smooth Network to enhance the intra-class consistency with the global context and the Channel Attention Block
- Border Network with deep supervision to enlarge the variation of features on both sides of the semantic boundary. This can also refine the semantic boundary of prediction.

Learning a Discriminative Feature Network for Semantic Segmentation

Changqian Yu¹, Jingbo Wang², Chao Peng³, Changxin Gao¹, Gang Yu³, and Nong Sang¹ ¹Huazhong University of Science and Technology ²Peking University ³Megvii Inc. (Face++)

ethod	Mean IOU(%)	Method
es-101 ⁻ es-101	69.26 72.86	Res-101+SN Res-101+SN+BN
s-101+RRB	76.65	Res-101+SN+MS Flip
s-101+RRB+GP s-101+RRB+GP+CAB	78.20 79.31	Res-101+SN+BN+MS_Flip
es-101+RRB+DS es-101+RRB+GP+DS es-101+RRB+GP+CAB+DS	77.08 78.51 79.54	SN: Smooth Network BN: Border Network MS_Flip: adding multi-scale

RRB: Refinement Residual Block GP: global pooling CAB: Channel Attention Block DS: deep supervision.

le inputs and left-right flipped inputs.

80.01

Visualization of Smooth Network and Border Network

ndTruth	(c) Before SN	(d) Afte	r SN	
oundTruth ary	n (c) Before BN	(d) Afte	r BN	
			A	
undTruth	(c) Boundary	(d) Prediction		
2012 Results on Cityscapes				
.012	Results on Citysca			
OU(%)	Method	Mean IO	DU(%)	
OU(%) .2	Method	Mean IO w/o coarse	DU(%) w/ coarse	
OU(%) .2 .6	Method CRF-RNN [41]	Mean IO w/o coarse 62.5	DU(%) w/ coarse -	
DU(%) .2 .6 .8	Method CRF-RNN [41] FCN [27]	Mean IO w/o coarse 62.5 65.3	DU(%) w/ coarse - -	
DU(%) .2 .6 .8 .6 1	Method CRF-RNN [41] FCN [27] DPN [26]	Mean IO w/o coarse 62.5 65.3 66.8	DU(%) w/ coarse - - 59.1	
DU(%) .2 .6 .8 .6 .1 .3	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11]	Mean IO w/o coarse 62.5 65.3 66.8 69.7	DU(%) w/ coarse - 59.1 71.8	
DU(%) .2 .6 .8 .6 .1 .3 .9	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5]	Mean IO w/o coarse 62.5 65.3 66.8 69.7 70.4	DU(%) w/ coarse - 59.1 71.8 -	
DU(%) .2 .6 .8 .6 .1 .3 .9 .6	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20]	Mean IC w/o coarse 62.5 65.3 66.8 69.7 70.4 71.6	DU(%) w/ coarse - 59.1 71.8 - -	
DU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19]	Mean IC w/o coarse 62.5 65.3 66.8 69.7 70.4 71.6 73.6	DU(%) w/ coarse - 59.1 71.8 - - -	
DU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7 .7	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19] SegModel [10]	Mean IC w/o coarse 62.5 65.3 66.8 69.7 70.4 71.6 73.6 73.6 78.5	DU(%) w/ coarse - 59.1 59.1 71.8 - - - 79.2	
DU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7 .7 .7 .1	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19] SegModel [10] DUC [34]	Mean IC w/o coarse 62.5 65.3 66.8 69.7 70.4 71.6 73.6 73.6 78.5 77.6	DU(%) w/ coarse - 59.1 59.1 71.8 - - 79.2 80.1	
OU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7 .7 .1 .6	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19] SegModel [10] DUC [34] PSPNet [40]	Mean IC w/o coarse 62.5 65.3 66.8 69.7 70.4 71.6 73.6 73.6 78.5 77.6 78.4	DU(%) w/ coarse - 59.1 71.8 - - 79.2 80.1 80.2	
OU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7 .7 .7 .7 .7 .2	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19] SegModel [10] DUC [34] PSPNet [40] Ours	Mean IC w/o coarse 62.5 65.3 66.8 69.7 70.4 70.4 71.6 73.6 73.6 78.5 77.6 78.4 79.3	DU(%) w/ coarse - 59.1 71.8 - - 79.2 80.1 80.2 80.3	
OU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7 .7 .7 .7 .7 .9 .6 .7 .9	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19] SegModel [10] DUC [34] PSPNet [40] Ours	Mean IC w/o coarse 62.5 65.3 66.8 69.7 70.4 70.4 71.6 73.6 73.6 78.5 77.6 78.4 79.3	DU(%) w/ coarse - 59.1 71.8 - - 79.2 80.1 80.2 80.3	
OU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7 .7 .7 .7 .7 .9 .6 .7 .7 .4	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19] SegModel [10] DUC [34] PSPNet [40] Ours	Mean IO w/o coarse 62.5 65.3 66.8 69.7 70.4 71.6 73.6 73.6 78.5 77.6 78.4 79.3	DU(%) w/ coarse - - 59.1 71.8 - - 79.2 80.1 80.2 80.2 80.3	
OU(%) .2 .6 .8 .6 .1 .3 .9 .6 .7 .7 .7 .7 .9 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	Method CRF-RNN [41] FCN [27] DPN [26] LRR [11] Deeplab v2-CRF [5] Piecewise [20] RefineNet [19] SegModel [10] DUC [34] PSPNet [40] Ours	Mean IO w/o coarse 62.5 65.3 66.8 69.7 70.4 71.6 73.6 73.6 78.5 77.6 78.4 79.3	DU(%) w/ coarse - 59.1 71.8 - - 79.2 80.1 80.2 80.2 80.3	